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Both large-wildlife loss and climatic changes can independently influence the

prevalence and distribution of zoonotic disease. Given growing evidence that

wildlife loss often has stronger community-level effects in low-productivity

areas, we hypothesized that these perturbations would have interactive effects

on disease risk. We experimentally tested this hypothesis by measuring tick

abundance and the prevalence of tick-borne pathogens (Coxiella burnetii and

Rickettsia spp.) within long-term, size-selective, large-herbivore exclosures

replicated across a precipitation gradient in East Africa. Total wildlife exclusion

increased total tick abundance by 130% (mesic sites) to 225% (dry, low-

productivity sites), demonstrating a significant interaction of defaunation and

aridity on tick abundance. When differing degrees of exclusion were tested

for a subset of months, total tick abundance increased from 170% (only

mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclu-

sion differentially affected the abundance of the three dominant tick species,

and this effect varied strongly over time, likely due to differences among species

in their host associations, seasonality, and other ecological characteristics.

Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall

levels, or tick species, suggesting that exposure risk will respond to defaunation

and climate change in proportion to total tick abundance. These findings

demonstrate interacting effects of defaunation and aridity that increase disease

risk, and they highlight the need to incorporate ecological context when

predicting effects of wildlife loss on zoonotic disease dynamics.
1. Introduction
Zoonotic diseases are a rising concern worldwide [1–3]. Yet, amid rapidly declin-

ing wildlife populations and global climate change, there is no consensus on how

these perturbations will independently and interactively affect zoonotic disease

risk. Anthropogenic land-use change is likely to play a substantial role in facilitat-

ing outbreaks through a variety of mechanisms [2,4], including changes in

wildlife host populations and communities [3–6]. Meanwhile, climate changes

can have substantial and variable effects on zoonotic diseases [7,8], even when

considered in isolation of changes to host populations. Thus, the combined

effects of wildlife loss and climate change are likely to be complex [7,9], but

data are lacking, especially for regions where medical resources and research

efforts are low and zoonotic disease risk is highest [2]. Although there has been

a widespread call for more research on the net effects of anthropogenic changes
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on disease and disease vectors globally [3–5], large-scale

experimental tests remain scarce.

Ticks and tick-borne pathogens provide a salient system

for examining the effects of wildlife loss and climate changes

on disease risk. Globally, ticks are considered to be the most

important disease vectors for wildlife and domestic animals

[10], and are second only to mosquitoes among vectors affecting

humans [11]. Estimated economic costs of ticks and tick-borne

disease are variable [12], and although no recent estimate

has been made, one study attributed annual losses of US$

13.9 billion worldwide to tick-borne disease in cattle alone [13].

Globally, the pervasive decline in large-wildlife popu-

lations [14] is affecting a wide range of ecological functions

and services, including disease control [15,16]. Ticks are also

likely to be affected, considering their inextricable links to

host population dynamics. While a substantial body of work

demonstrates complex relationships among hosts, predators,

and ticks (e.g. for the Lyme disease system in North America

[17]), few studies have experimentally investigated how size-

selective defaunation, which simulates the disproportionate

vulnerability of larger animals to human disturbance [14],

affects tick abundance and risk of tick-borne disease (but see

[18]). Size-selective defaunation can directly affect tick abun-

dance through the loss of hosts [19] and can also indirectly

affect tick survival by altering vegetation structure [20–23]

and the abundance and composition of small-vertebrate

hosts [22,24]. Large-mammal loss often accompanies small-

mammal abundance increases [22,24,25], leading to changes

in host availability for different tick species. The relative

importance of these sometimes opposing factors is poorly

understood for most systems and likely depends on vector

life cycles and host associations.

Climate can also affect the prevalence and distribution of

zoonotic pathogens, particularly those limited by climate-

sensitive vectors [7,26–28]. This topic has become increasingly

relevant in the context of global climate changes [7,9,29].

As tick survival can depend on factors such as rainfall and

temperature [21,30,31], several models have predicted shifting

tick ranges that result in net range expansions under climate

change scenarios, although this varies among tick species

[32]. This experiment is one of few field studies that consider

climatic effects on multiple tick species simultaneously,

and is situated in a region where climate changes are already

pervasive and will be challenging to mitigate [33].

While the independent effects of climate change and bio-

diversity loss on zoonotic disease have received considerable

recent attention, their potential interaction has not been well

explored. For tick-borne diseases, prior studies have been

largely correlative, yielding mixed results on the relative

importance of various climate metrics, host abundance, and

their interaction in determining tick abundance [34–37],

emphasizing the need for more data describing a range of

interacting forces on tick biology. The indirect effects of large

herbivores on other small consumers, from insects to birds

and small mammals, are highly sensitive to variation in climate

and productivity [22,38,39], but it is not known whether these

results can be generalized to disease risk in particular.

East African savannahs are hotspots of tick and tick-borne

pathogen diversity [40], and tick-borne pathogens such as

Rickettsia, Coxiella, and Anaplasma are major regional economic

and human health concerns [41–43]. For example, a recent

study in Tanzania found that bacterial zoonoses caused 26%

of acute fever cases; of these, 20% were Q fever, caused by
Coxiella burnetii, and 30% were Rickettsiosis, caused by spotted

fever group Rickettsia [44]. Accordingly, African savannahs

offer an ideal system for testing the effects of varying degrees

of defaunation on tick abundance, as hosts are diverse and

abundant, ranging over six orders of magnitude in size and

occupying diverse functional roles [22,45]. However, large

wildlife are experiencing widespread and precipitous declines

in many parts of this region [46,47], underscoring the impor-

tance of predicting effects across ecological communities.

Furthermore, climate change is also likely to affect tick-borne

disease in East Africa, due in part to shifting rainfall patterns

[31]. While large-scale predictions for future rainfall regimes

are mixed [33], much of the region has been affected by persist-

ent reductions in the critical ‘long rains’ since 1970 [48], and

localized rainfall prediction models indicate that this trend is

likely to continue [49].

We used a replicated series of experimental large-herbivore

exclosures to quantify the effects of size-selective defaunation,

climatic context, and their interaction on tick abundance

and prevalence of tick-borne pathogens. In the light of evi-

dence that other consumer groups respond both numerically

and behaviourally to an interaction between defaunation

and primary productivity [38,39,50,51], we hypothesized that

(i) large-herbivore removal has strong effects on ticks and

their associated pathogens, (ii) tick species that use small-

mammal hosts will increase in abundance when large mammals

are excluded (and small-mammal densities increase), and

(iii) the strength of these effects are contingent on climatic con-

text and are strongest in more arid, low-productivity areas.
2. Material and methods
(a) Survey site and exclosures
Research was conducted in the Ungulate Herbivory Under Rain-

fall Uncertainty (UHURU) experimental plots [22,52,53],

established in 2008 at Mpala Research Centre (MRC) in Laikipia

County, Kenya (08170 N, 378520 E, 1 600 m elevation). MRC sup-

ports robust populations of wildlife including elephants

(Loxodonta africana), giraffe (Giraffa camelopardalis), zebra (Equus
grevyi and Equus quagga), impala (Aepyceros melampus), and

dik-dik (Madoqua kirkii), among others. The UHURU plots consist

of four 1 ha exclosure treatments replicated three times at each of

three ‘levels’ of a rainfall and productivity gradient created by

the rain shadow of Mt Kenya (i.e. nine total replicates of each treat-

ment, 36 total plots; electronic supplementary material, table S1).

The four treatments simulate different scenarios of size-selective

species losses using different combinations of fencing. The treat-

ments are as follows: (i) total exclusion of all ungulate herbivores

(Total exclosure), (ii) exclusion of all herbivores greater than

15 kg (Meso exclosure), (iii) exclusion of only mega-herbivores

(i.e. giraffe and elephant; ‘Mega exclosure’), and (iv) unfenced

open plots (Control) [22]. Mean annual precipitation increases

approximately 45% from the arid northern sites (440 mm yr21),

to the mesic southern sites (640 mm yr21), with central sites inter-

mediate (580 mm yr21). Seasonal rains typically fall from March to

May (long rains) and October to December (short rains) [54]. As in

other semi-arid savannahs, primary productivity is tightly linked

to precipitation across this gradient [22]. Although the Normalized

Difference Vegetation Index (NDVI) has been used previously

in studies of tick abundance [21], we used mean annual rainfall

as the primary climatic variable in our analyses, both because

NDVI increases in exclosure treatments due to decreased herbiv-

ory and trampling by large mammals [22] (and thus would not

isolate climatic factors), and because climatic factors tend to
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outperform NDVI in predicting African tick distributions [31]. We

also present a complementary analysis using a categorical ‘climatic

level’ variable in lieu of the continuous precipitation variable;

results are qualitatively similar (electronic supplementary

material, tables S2 and S3).
ocietypublishing.org
Proc.R.S
(b) Ticks
The density of infected vectors is a common metric of vector-

borne zoonotic disease risk [15,55,56] and is directly related

to both vector density and pathogen infection rate. Thus, changes

in tick density, infection rate, or a combination of the two can

affect disease risk. To measure disease risk, we used tick drags

and pathogen screening to quantify the density and infection rate

of ticks.
oc.B
284:20170475
(c) Tick drags
Ticks were collected in Total exclosure and Control plots each

month for 13 months between October 2013 and November

2014. For each survey, a standard white canvas cloth was

dragged throughout all passable portions of each plot, but

areas of dense thicket areas were not sampled. Because exclosure

plots often featured thick, thorny vegetation that precluded drags

over fixed linear distances, we conducted drags for a 1 h period,

with ticks collected every 5 min. We also surveyed the Mega and

Meso exclosure plots for five months in 2014 (January, July,

August, September, and November). To ensure that drags accu-

rately estimated the tick species composition of each plot, the

drags were complemented with CO2 traps [57] for two months.

Ticks were subsequently identified to species using microscopy

and descriptions from [58]. We focused all analyses on three con-

generic tick species—Rhipicephalus pravus, R. praetextatus, and

R. pulchellus—that dominated the tick community. These tick

species vary considerably in typical host preferences for each

of their three distinct life stages (electronic supplementary mate-

rial, figure S1). In general, immature stages of R. pravus and

R. praetextatus feed upon small mammals (particularly rodents),

which roughly double in abundance within total exclosures

[22,53], whereas all stages of R. pulchellus feed on larger mammals

[58,59]. Thus, the UHURU exclosure design alters the dominant

host availability for each of these tick species (electronic

supplementary material, figure S1 [22,53,58,59]).
(d) Pathogen screening
We extracted DNA and prepared double-indexed libraries for 136

ticks following [60]. Tick sample size was calculated to detect a

10% variation in pathogen prevalence across treatments while

sampling across multiple species, treatments, and levels. Ticks

with insufficient read data were excluded. Libraries were captured

in pools of eight individuals (12.5 ng each library per capture;

100 ng total library per pool) using the Ectobaits protocol [60].

Double-indexed libraries were then amplified post capture with

Illumina adapters by 18 cycles of PCR. Adapter multimers were

removed prior to sequencing using QIAEX II Gel Extraction Kits

(Qiagen). Captured products were sequenced on a MiSeq (Illu-

mina, USA) using paired-end 150 bp reads. MiSeq library

sequences underwent quality control as described in [60], except

that the minimum average base quality score was 25. We differen-

tiated between C. burnetii and Coxiella-like endosymbionts, as

these groups are genetically similar, but endosymbionts are non-

pathogenic and often have high infection rates [61]. We reanalysed

five libraries (KenT11b–KenT15b) included in [60]. For a subset of

ticks (n ¼ 20), we confirmed Rickettsia, Coxiella, Ehrlichia, and

Anaplasma infection and tick species using PCR assays following

[60]. Positive PCR products were sequenced with an ABI 3130xl

(Thermo Fisher Scientific, USA).
(e) Statistical analyses
We analysed the tick drag data with generalized linear mixed

models (GLMMs), using counts of adult ticks per plot as

our response variable [62]. Fixed effects included treatment (Total

exclosure and Control for all months; all treatments for a subset

of months), mean annual precipitation, and the treatment � rainfall

interaction; random effects included replicate plot identity (three

plots within each of three rainfall levels; n ¼ 9) and time period

(month; n ¼ 12 for Total exclosure versus Control, n ¼ 5 for all

treatments). We ran two separate sets of GLMMs: one for Total

exclosure and Control plots across all months, and another for

all plots for the subset of five months. Candidate-model sets

included all possible combinations of the two main effects and

their interaction (the ‘full model’), along with a null model; all

models included the random effects (table 1; electronic sup-

plementary material, table S4). We analysed the combined total

of all tick species and each species separately. As data were over-

dispersed and zero-inflated for individual tick species, we used

zero-inflated negative-binomial distributions with log link func-

tions in our GLMMs. For the two datasets that combined the

three tick species, we used negative-binomial distributions with

log link functions. All models were constructed using the

glmmADMB package in R [63,64].

All model combinations for each tick species and the combined

total of ticks were ranked using the second-order Akaike’s infor-

mation criterion (AICc) [62] using the MuMIn package [65]. We

investigated all models (reported in electronic supplementary

material, S5 and S6) and present the 95% confidence interval set

with individual parameter estimates and Akaike weights (wi) in

tables 1 and 2.

Coxiella burnetii and Rickettsia spp. were the only pathogens

sufficiently prevalent to permit robust statistical analysis. We

analysed the likelihood of infection using binomial GLMMs

with logit link functions, with infection status of each tick

(infected/uninfected) as the response. Experimental treatment,

tick species, rainfall, and treatment � rainfall were fixed effects

and plot replicate was a random effect.

All analyses were performed in R v. 3.3.0 [66]. Descriptive

statistics are reported as mean number of ticks per ha+1 s.e.
3. Results
In total, we captured 5 677 ticks across all plots, including 4 180

via tick drags and 1 497 via traps. Of these, greater than 95%

were adults of just three species: R. pravus (43%), R. praetextatus
(36%), and R. pulchellus (17%). Adults were substantially

more abundant than other life stages in both drag and trap

collections, despite efforts to avoid undersampling juvenile

ticks. Fewer than 3% of the ticks captured were nymphs,

and no larvae were collected. Tick traps did not capture

additional tick species; therefore, we used only drag data for

all subsequent analyses (electronic supplementary material,

S1, table S4 and figures S2, S3) and focused all analyses on

adults of the three dominant species.
(a) Total abundance of the three dominant tick species
Total tick abundance varied seasonally over the 13-month

sampling period, and the scale and timing of fluctuations

differed among tick species (figure 1a). However, on average,

total tick abundance doubled in Total exclosures (18.3+ 1.9)

relative to Control plots (9.9+ 1.0) (figure 1a,b and

table 1). Low-rainfall plots had 225% more ticks on average

(17.8+2.3) than mesic plots (7.9+1.0). Total tick abundance

was best explained by the GLMM that included exclosure



Table 1. Effects of exclosure treatment, rainfall, and their interaction for all months (Control and Total exclosure plots only) from four GLMMs. Control plots are
designated as the reference, and rainfall (millimetres) is scaled by standard error (84 mm) and centred at the mean (533 mm) for ease of interpretation. Significant
relationships ( p , 0.05) are in bold. Positive relationships are shaded in blue (darker); negative relationships are shaded in yellow (lighter). All estimates are shown with
standard errors, z-score (upper right), and p-value (lower right). Full model sets and parameters are shown in electronic supplementary material, table S5. (Online version
in colour.)

tick (intercept) rain exclosure exclosure × rainfall d.f. log likelihood AICc D weight

all ticks 2.117 
(0.200) 

10.61 
<.001 

–0.092 
(0.142) 

–0.65 
0.52 

0.587 
 (0.130) 

4.53 
<0.001

–0.295 
(0.128) 

–2.30 
0.02 7 –760.865 1536.3 0.00 0.749 

2.130 
(0.195) 

10.91 
<.001 

–0.244 
(0.125) 

–1.96 
0.05 

0.586 
(0.132) 

4.44 
<0.001 6 –763.474 1539.3 3.08 0.160 

R. pravus –0.173 
(0.388) 

–0.44 
0.66 

–0.304 
(0.297) 

–1.02 
0.31 

1.452 
(0.173) 

8.40 
<0.001 

–0.596 
(0.177) 

–3.37 
<0.001 8 –448.043 912.8 0.00 0.986 

R. praetextatus 1.157 
(0.441) 

2.63 
< .01 

0.431 
(0.115) 

3.74 
<0.001 6 –523.84 1059.7 0.00 0.468 

1.158 
(0.439) 

2.63 
<0.01 

–0.144 
(0.108) 

–1.34 
0.18 

0.429 
(0.115) 

3.74 
0.001 7 –523.011 1060.6 0.48 0.368 

R. pulchellus 0.896 
(0.312) 

2.87 
<0.01 

–0.441 
(0.227) 

–1.95 
0.05 6 –416.589 845.6 0.00 0.477 

0.886 
(0.308) 

2.87 
<0.01 

–0.150 
(0.116) 

–1.30 
0.19 

–0.445 
(0.225) 

–1.98 
0.05 7 –415/733 846.0 0.42 0.386 

legend:
estimate
(s.e) 

z-score 
p-value 
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treatment, precipitation, and their interaction (table 1; elec-

tronic supplementary material, table S5) (wi ¼ 0.75). The

interaction (z ¼ 22.3, p ¼ 0.02; table 1) reflected the increasing

effect of wildlife exclusion on tick abundance as aridity

increased (figure 1c and table 1; electronic supplementary

material, table S5). We found some support (wi ¼ 0.16) for

a model with no interaction and a marginally negative

relationship between rainfall and tick abundance (z ¼ 21.96,

p ¼ 0.05). Net results were similar in the analysis that con-

sidered all four wildlife exclusion treatments for a subset

of months: total tick abundance increased from 170%

(only mega-herbivores excluded) to 360% (all large wildlife

excluded) (figure 1d ). The full model was again the best fit

(wi ¼ 0.99), with significant interactions between rainfall and

the Total and Meso exclosure treatments (z ¼ 23.61, p ¼
0.001, Total; z ¼ 23.38, p ¼ 0.001, Meso, table 2; electronic

supplementary material, table S6).

(b) Species-specific responses
Although R. pravus and R. praetextatus, two tick species that

often parasitize smaller mammals, increased with large-

mammal loss, only R. pravus abundance showed clear evidence

of an interaction between exclosure and aridity. For the full

13 months of data, the best model for R. pravus included treat-

ment, rainfall, and their interaction (wi ¼ 0.99), whereas the best

model for R. praetextatus included only treatment (wi ¼ 0.47)

and a second model (wi ¼ 0.37) included the non-significant

effect of rainfall (table 1). Both tick species increased in Total

exclosures relative to Controls (z ¼ 8.40, p , 0.001, R. pravus;
z ¼ 3.74, p , 0.001, R. praetextatus), and this effect was stronger

in drier sites for R. pravus only (z ¼ 23.37, p , 0.001). By con-

trast, rainfall had no detectable effect on tick abundance in
Control plots (z ¼ 21.02, p ¼ 0.31). For the subset of data

collected in all four wildlife exclusion treatments, the

full model was the best fit for both tick species (wi ¼ 0.93 and

wi ¼ 0.78, R. pravus and R. praetextatus, respectively). Both tick

species increased in all exclosure treatments relative

to Controls, and both increased significantly in Total exclosu-

res (z ¼ 7.22, p , 0.001; z ¼ 4.07, p , 0.001, table 2). This

effect was more pronounced in drier sites for both species,

although this was only significant for R. praetextatus in Meso

exclosures (z ¼ 22.26, p ¼ 0.02) and R. pravus in Total exclo-

sures (z ¼ 23.26, p , 0.001, table 2). A second model for

R. praetextatus that included only treatment (wi ¼ 0.13) received

considerably less support.

For R. pulchellus, which often parasitize larger-bodied

mammals, the best model for all months included only exclo-

sure treatment (wi ¼ 0.48), and a second model (wi ¼ 0.39)

included the non-significant effect of rainfall; but here Total

wildlife exclusion caused a 43% decrease in abundance relative

to Controls (z ¼ 21.95, p ¼ 0.05; table 1 and figure 1b). For

the subset of data including all four treatments, the best

model (wi ¼ 0.46) again included only exclosure treatment,

while a second model (wi ¼ 0.37) included the non-significant

effect of rainfall. However, this secondary analysis revealed

that partial wildlife exclusion caused increases in tick abun-

dance relative to controls (z ¼ 4.72, p , 0.001, Meso; z ¼ 2.44,

p ¼ 0.02, Mega, table 2 and figure 1d; electronic supplementary

material, table S6), but total exclusion had no significant effect

(z ¼ 20.57, p ¼ 0.57).

(c) Pathogens
The prevalence of C. burnetii isolates was 43% (n ¼ 58 of 136

ticks screened), and the prevalence of Rickettsia spp. was 5%



Table 2. Top models (95% CI) of exclosure treatment and rainfall on tick abundance (for a subset of months) from four GLMMs. Exclosure compares Control
plots (all wildlife allowed), the reference, with plots that selectively exclude mega-herbivores (MEGA), mega and meso herbivores (MESO), and all herbivores
greater than 5 kg (TOTAL). Rainfall (millimetres) is scaled by standard error (84 mm) and centred at the mean (533 mm) for ease of interpretation. Significant
relationships ( p , 0.05) are in bold, marginally significant relationships ( p , 0.1) are bordered by a broken line, positive relationships are shaded in blue
(darker), and negative relationships are shaded in yellow (lighter). All estimates are shown with standard errors, z-score (upper right), and p-value (lower right).
Full model sets and parameters are shown in electronic supplementary material, table S6. (Online version in colour.)

tick (intercept) rainfall exclosure rain × exclosure d.f.  log likelihood    AICc D    weight 

all ticks 

1.424 
(0.232) 

6.14 
<.001 

0.219 
(0.162) 

1.35 
0.18 

total
1.161 (0.168) 

6.92 
<0.001 

total 
–0.618 (0.171) 

–3.61 
<0.001

11 –551.182 1125.9 0.00 0.995 
meso

0.698 (0.170) 
4.11 
<0.001 

meso 
–0.585 (0.173) 

–3.38 
<0.001

mega
0.511 (0.170) 

3.01 
<0.01 

mega 
–0.150 (0.173) 

–0.87 
0.39 

R. pravus 

–0.511 
(0.520) 

–0.98 
0.33 

–0.228 
(0.365) 

–0.62 
0.53 

total 
1.904 (0.264) 

7.22 
<0.001 

total 
–0.874 (0.268) 

–3.26 
<0.01 

12 –329.782 685.4 0.00 0.927 
meso 

0.627 (0.282) 
2.23 
0.03 

meso 
–0.428 (0.288) 

–1.49 
0.14 

mega 
0.537 (0.283) 

1.89 
0.06 

mega 
–0.267 (0.295) 

–0.91 
0.37 

R. praetextatus 

0.159 
(0.516) 

0.31 
0.76 

0.499 
(0.268) 

1.86 
0.06 

total 
1.050 (0.258) 

4.07 
<0.001 

total 
–0.350 (0.278) 

–1.26 
0.21 

12 –313.187 652.2 0.00 0.781 
meso 

0.448 (0.263) 
1.70 
0.09 

meso 
–0.628 (0.278)

–2.26 
0.02 

mega 
0.292 (0.266) 

1.10 
0.27 

mega 
–0.030 (0.286) 

–0.10 
0.92 

0.300 
(0.511) 

0.59 
0.56 

total 
0.891 (0.236) 

3.77 
<0.001 

 8 –319.534 655.9 3.67 0.125 
meso 

0.351 (0.242) 
1.45 
0.15 

mega 
0.204 (0.239) 

0.85 
0.39 

R. pulchellus 

0.463 
(0.200) 

2.32 
0.02 

total 
–0.155 (0.273) 

–0.57 
0.57 

7 –376.251 767.2 0.00 0.463 
meso 

1.184 (0.251) 
4.72 
<0.001 

mega 
0.630 (0.258) 

2.44 
0.015 

0.470 
(0.196) 

2.40 
0.02 

–0.136 
(0.102) 

–1.34 
0.179 

total 
–0.151 (0.272) 

–0.55 
0.579 

8 –375.383 767.6 0.45 0.369 meso 
1.153 (0.250) 

4.61 
<0.001 

mega 
0.619 (0.256) 

2.42 
0.016 

legend: 
estimate
(s.e.) 

z-score 
p-value 
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(n ¼ 7 of 136 ticks; four of these were from the spotted fever

group). We detected Ehrlichia in one adult tick and Anaplasma
in one nymph (nymphs were not analysed due to the small

sample size). We found a high prevalence of non-pathogenic

Coxiella-like endosymbionts (57%; 46% of these were also pre-

sent in ticks with confirmed C. burnetii isolates). Therefore,

our analyses excluded ticks for which only a Coxiella-like
endosymbiont was detected, but included ticks with both

C. burnetii and Coxiella-like endosymbionts.

For the GLMM for C. burnetii, no combination of our predic-

tors outperformed the null model (table 3). For Rickettsia spp.,

the best model included tick species and rainfall; however,

neither estimate was significant (although rainfall marginally

increased infection probability; table 3). In summary, there
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abundance increased in Total exclosures, the magnitude and direction of this effect varied by tick species for the 13-month dataset. (c) For all tick species summed
together, exclusion interacted with annual rainfall, with stronger effects of exclusion in drier environments. (d ) When all exclosures were surveyed for the five-month
subset of data, tick species responded differently to varied wildlife loss levels. Asterisks indicate significant ( p , 0.05) differences from Control plots (green; left-
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were no pronounced effects of treatment, tick species, or rainfall

on pathogen prevalence (figure 2 and table 3; electronic

supplementary material, table S7 and figure S4).
4. Discussion
Our results support our hypothesis that defaunation and

climate can interact to markedly affect the abundance of

ticks and thus the risk of tick-borne disease exposure

(although not necessarily the prevalence of these patho-

gens). Total exclusion of all large wildlife increased total

tick abundance by 130% (mesic sites) to 225% (arid sites),

showing a significant interaction with aridity. Tick

abundance increased from 170% (only mega-herbivores

excluded) to 360% (all large wildlife excluded) during the

five-month period in which all exclosure plots were sur-

veyed. We found no significant variation in pathogen

prevalence across plots or tick species, suggesting that the
risk of tick-borne pathogen exposure reflects observed tick

abundance patterns.

However, this overall pattern masks strong differences in

the magnitude and direction of effects of wildlife exclusion

across tick species and over time. Tick species-specific responses

show some overlap with expectations based on tick–host

associations. Patterns in total tick abundance were driven

by two dominant tick species, R. pravus and R. praetextatus,
whose immature stages frequently feed upon small hosts,

which also increase strongly following wildlife exclusion

[22,50,51]. Although we do not expect changes in adult tick

abundance to directly correlate with fluctuations in rodent

abundance in these plots over time, a comparison of long-

term rodent abundance and tick abundance within each plot

produces positive correlations for R. pravus and R. praetextatus
(z ¼ 6.59, p , 0.001 and z ¼ 3.17, p , 0.01, respectively; elec-

tronic supplementary material, table S8). By contrast, the

third common tick species, R. pulchellus, whose adult stages pri-

marily parasitize vertebrates larger than 15 kg [58], and whose
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Figure 2. The estimated number of infected and uninfected ticks increased in plots where large wildlife had been removed (Exclosure), and this was further
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Table 3. Results of GLMMs for Coxiella burnetii and Rickettsia sp. ‘Species’ compares the probability of tick infection with each pathogen for each tick species
(R. pravus—RHPV and R. pulchellus—RHPU, when compared with R. praetextatus—RHPR). Marginally significant relationships ( p , 0.1) are bordered by a
broken line. All estimates are shown with standard errors, z-score (upper right), and p-value (lower right). (Online version in colour.)

intercept species exclosure rainfall 
exclosure ×

rainfall 
C. burnetii 

model 1 
wi = 0.26 –0.42 ±  0.2 

–2.38 
0.02 

Rickettsia sp. 
model 1 

wi = 0.35 
–2.44 ± 0.7 

–3.48 
<0.001 

RHPU
–14.8 ± 799

–0.02
0.99

1.16 ± 0.6 
1.87 
0.06 RHPV

–1.25 ± 0.8
–1.53
0.13

model 2 
wi = 0.18 

D AICc = 1.36 
–3.37 ± 0.6 

–5.74 
<0.001 

 1.09 ± 0.6 
1.87 
0.06 
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immature stages are not found on rodents [59], decreased with

the total absence of large wildlife for the 13-month dataset.

However, for the five months for which all four exclosure

treatments were surveyed, the abundance of this tick species

in total exclosures was no different from that in controls, but

we observed marked increases in abundance within partial

wildlife exclosures (see electronic supplementary material,

figure S1 for tick/host associations in exclosure plots). This

discrepancy highlights temporal variation in exclosure effects:

strong changes occur during months of peak tick abundance,

which were not captured by the five-month dataset.

Other factors beyond the release of intermediate hosts may

have also influenced the marked differences in adult tick abun-

dance among experimental plots. Increases in small carnivores
(potential hosts for all three tick species) in response to elevated

rodent density in exclosure plots may increase total tick abun-

dance [18]. Likewise, increases in understory vegetation cover

following large-wildlife loss may increase tick survivorship

(via lowered risk of desiccation) [22]. The relative importance

of these factors may vary among tick species depending on

their life histories. The complex pathways by which wildlife

loss may affect the abundance of different tick species likely

explains why the few previous studies on the effects of large-

wildlife exclosure on tick abundance have produced mixed

results [18,67].

Total tick abundance was greater in drier areas, although

this pattern was largely driven by the most common tick

species, R. pravus. R. praetextatus and R. pulchellus only
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increased modestly in these areas, and annual rainfall was not a

major explanatory factor in models of their abundance. This is

consistent with previous observations of climate preferences

for these species, as R. pravus may particularly favour areas

with extended dry seasons [61]. Notably, tick community

composition varied considerably over seasons, and the most

significant responses to exclosures occurred at months of

peak abundance (figure 1a). These months of peak abun-

dance drove overall patterns for each species and are likely

to be a result of strong differences in tick phenology and

responsiveness to rainfall.

Rhipicephalus pravus also drove an interaction between

wildlife exclosure treatment and aridity on tick abundance,

despite variation among tick species. This interaction

and its variation are consistent with prior studies of the

effects of defaunation on consumer communities, including

a recent meta-analysis that found these effects are often

context-dependent and mediated by site productivity

[39,50,68]. In this region, rodent-borne pathogens have

shown a similar response: anthropogenic disturbance tends

to cause stronger increases in rodent-borne disease in drier

climates with lower productivity [69]. However, consistent

with our findings here, responses are variable across specific

hosts and pathogens [69].

Both pathogens analysed in this study are globally impor-

tant. C. burnetii, the causative agent of Q fever, is considered

to be an emerging zoonotic disease [70], while rickettsial patho-

gens are responsible for a variety of spotted fevers—including

African tick-bite fever (caused by Rickettsia africae) in our study

location [42]. We observed no significant differences in the

prevalence of either C. burnetii or Rickettsia spp. due to wildlife

exclosure treatment, rainfall, or tick species. Larger sample

sizes and screening over many seasons might reveal finer-

scale dynamics; however, on a coarse level, this result suggests

that tick-borne disease risk is likely to be well approximated by

estimates of total tick abundance (figure 2). C. burnetii preva-

lence was surprisingly high. Although we excluded ticks for

which only an endosymbiont was detected, 67% of the ticks

infected with C. burnetii were also positive for the Coxiella-

like endosymbiont. Endosymbionts may benefit some ticks

[61], and recent work suggests that C. burnetii recently emerged

from this group [71]. Thus, the genetic similarity between

C. burnetii and Coxiella-like endosymbionts may have yielded

some false positives given that the full Coxiella phylogeny is

incomplete. However, we do not expect this to bias our results,

given that the likelihood of false positives is consistent across

all predictors.

Our study demonstrates the significant potential for size-

selective defaunation to alter the risk of tick-borne disease.
Substantial variation in tick abundance and species compo-

sition over time reflect the inherent complexity of a system

that depends on host, environmental, and vector variables,

but total effects suggest long-term patterns, especially when

ticks peak in abundance. On average, when all large wildlife

were excluded, the total number of ticks nearly doubled; and,

when only Mega wildlife and Meso wildlife were excluded

(perhaps a more realistic short-term defaunation scenario

for much of the world), ticks of all three major species

increased, suggesting that large-wildlife loss can contribute

to an increased tick-borne disease risk that may be mitigated

by conservation in many contexts. Furthermore, the costs of

wildlife loss on tick-borne disease in this region may be inten-

sified in drier, less productive areas that are likely to worsen

with a changing climate [48], demonstrating interacting

effects of wildlife loss and climate change on tick-borne

disease risk. On a more global scale, our study highlights

the challenge of predicting the effects of either biodiversity

loss or climate change in isolation of other stressors on

vector ecologies and infectious disease dynamics.
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